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THE INVERSE PROBLEM OF STREAMLINING SINGULARITIES WITH THE PLANE FLOW 

OF AN IDEAL FLUID WITH A FREE BOUNDARY 
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and A. S. Savin 

UDC 532.59 

In the present study we will examine the plane potential steady-state flow of a heavy 
ideal fluid with a free boundary. In this case, the velocity potential has a finite number 
of point singularities. The potential motions of the fluid in the presence of a finite sys- 
tem of point singularities were examined in [i] in connection with the problem of the stream- 
lining of a wing-shaped object under water, and the calculation of the wave resistance, and 
these were dealt with also in [2, 3], etc. In the cited references the problem was solved 
in "direct" formulation, i.e., on the basis of given point singularities of a complex poten- 
tial, which simulated the streamlined solid, and the profile of the free surface and the 
velocity field were determined. The solutions were derived within the framework of linear 
wave theory. In the present paper we solve the "inverse" problem: the stationary profile 
of the free surface is given, and we have to reconstruct the pattern of the flow through 
the thickness of the fluid. The solution of the problem is achieved both in approximate 
linear theory and in a precise formulation. 

i. Construction of the Solution. Let S(x) (-= < x < ~) represent the profile of the 
free surface and let v 0 be the velocity of the unperturbed flow. By means of G c C we will 
denote the region occupied by the fluid: G = {z : z = x + iy, y < S(x)} (we will investigate 
an infinitely deep fluid). The set of points lying at the surface is denoted S: S = {z: 
Imz = S(Re z)}. We will impose the following limitation on S(x): 

s(x) < v0~/2g (1.1)  

(g i s  t he  g r a v i t a t i o n a l  a c c e l e r a t i o n ) .  F u l f i l l m e n t  of  i n e q u a l i t y  ( 1 . 1 )  en su re s  t he  absence  
of  c r i t i c a l  p o i n t s  o f  complex v e l o c i t y  a t  t he  boundary of  t he  f l u i d  and t h i s ,  in  t u r n ,  guaran-  
t e e s  t he  smoothness o f  t he  p r o f i l e  f o r  S(x)  [4 ] .  Let  P r e p r e s e n t  t he  t o t a l  number o f  p o l e s  

f o r  t he  complex v e l o c i t y  w(z) in  G, i . e . ,  P = ~ p~, where P < = and Pi  r e p r e s e n t  the  m u l -  
: i: z i n g  

tiplicity of the pole z i. The quantities P and Pi are not known in advance and are deter- 
mined in the process of the solution. Moreover, the natural condition of limitation with 
respect to the velocity of the fluid at infinity is assumed to be satisfied: 

Iw~)l< w <  ~- ~ ,  I z ] > R ,  z ~ G  ( 1 . 2 )  

(R i s  a r a t h e r  l a r g e  number) .  The boundary c o n d i t i o n s  f o r  the  p o t e n t i a l  W a r e  s a t i s f i e d  
a t  t he  f r e e  s u r f a c e :  
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W = re(z) + iT(z), ( 1 . 3 )  

i [(or (o~(~,s(~)))21 
-~ o~ ~ + ou + pgS (x) = cl, T (z, S (z)) = c2 

(p i s  t h e  d e n s i t y  o f  t h e  f l u i d  and c l ,  c 2 a r e  c o n s t a n t s ) .  

To r e c o n s t r u c t  t h e  v e l o c i t y  w(z)  in  G, we w i l l  f i r s t  o f  a l l  f i n d  i t s  p o l e s  z k �9 G. For  
t h i s ,  in  t h e  s e t  G + = C\(G U S) we w i l l  d e t e r m i n e  t h e  f u n c t i o n  R ( t )  by t h e  r e l a t i o n s h i p  

R ( ~ ) = - -  j s '  dS ( 1 . 4 )  
- ~  (z  + iS (z)  - -  )~)~ ' = d--7-" 

It is obvious that the function R(X) is holomorphic in G +. Moreover, it can be demonstrated 
that the analytical extension R(z) of the function R(1) to the total complex plane C is a 
rational function [within the assumptions that we have made here with respect to w(z)]. In 
this case the poles of the function R(z) coincide with those of w(z) in G. Indeed, using 
the boundary conditions (1.3), and bearing in mind that w(z) = dW/dz, as well as condition 
(i.i), it is easy to calculate the complex velocity w(z) at the free boundary: 

w(x, S 

A c c o r d i n g  t o  ( 1 . 5 ) ,  t h e  e x p r e s s i o n  

Based on the familiar theorem from 
I �9 G +, we obtain the equation 

[ ~-2gs(~) ]1/~(i iS' 
(x)) = l + (s' (~))~ (x)). 

found in (1.4) for R(1) is written as follows: 

( 1 . 5 )  

_ {' w (~) d~ G +  

complex analysis [5], with consideration of (1.2) when 

R(~) = 2z~i ~ R e s  [ w(z) z~], 
( g _ ~ ?  ' 

where summation is carried out over all poles z k e G of the function w(z). 
order Pk yields the following contribution to R(1): 

Each pole z k of 

Ph+i Ai 

(Apk+l ~ 0). The analytical extension of R(1) from the region G + to the total complex plane 
thus has the form 

R (z) = 2ai '~. P_! (z__)) 
t(%-- Or,,+. ~ 

[pk(z) is a polynomial of a degree no higher than Pk - i]. 
exhibits no singular points in G, R(z) ~ O. 

Let us note that within the framework of linear wave theory, 
boundary in the place of (1.5) we validly have the expression 

w(x ,  o) = Vo(t - (g/roD s ( z )  - ~S ' (x) ) .  

Therefore R(1) must be determined by the relationship 

It is obvious that when w(z) 

for the velocity at the 

( 1 . 6 )  

~oo 

y i -- vS (z) -- iS' (z) 
/ / ( 2 9  = _ v 0 ( ~ _  ~)2 .... 

- - o o  

dx, Im ~ > 0 (1.7) 

(v = g/v02). In the following, all considerations proceed analogously. 
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Thus, the problem of finding the complex-velocity poles w(z) in G reduces to the simpler 
problem of finding the poles of the rational function R(z), which in turn, within the frame- 
work of the standard techniques of the Pade approximations, permits of an exact solution 
[6]. Let us dwell on this point in somewhat greater detail. 

The function R(~) in the vicinity of any point ~0 e G + can be expanded into a Taylor 
series 

//(1) = E ~ ( ~ -  z0)~. ( i  . s )  

The convergence radius of series (1.8) is no smaller than the distance from ~0 to S. The 
expressions for the coefficients of this expansion are easily obtained in the form of 

(~ - Zo)m+~ �9 
(i.9) 

According to the definition in the notation [6] of the Pade approximation [L/M] 
tion F(z) is known as the rational function 

A[L/MI(z) 
[L /M]  = B [ L / M ] ( z ) ,  

i f  t he re  e x i s t  polynomials A[L/M](z) and B[L/M](z) of degree L and M, r e s p e c t i v e l y ,  such 
that 

[ L / M ]  = F(z )  + O(zbt -M+l) .  

According to (i.i0), we will look for the Pade approximation (1.8) in the form 

of the func- 

( i . i o )  

.W~'~Cm Zm = ao+alz+''" +aLzL 
t + b l z ~ . . . + b ~ z  ~ + 

O(zL+M+I), 

where z = I - ~0. The polynomial B[L/M](z), in the denominator of the Pade approximation, 
with accuracy to the numerical factor, can be represented in the form of the determinant 
[6] 

I CL--M+I CL--M+2 �9 �9 CL CL+I I 
! 

CL--M~-2 eL--M+3 ... CL+I CL+2 [ 

Q[L/I~] (Z) ---- " . . . .  J (i.ii) 

The determinant C(L, M) = Q[L/M](0) vanishes when the order of the approximation exceeds 
that of the approximate rational function. More precisely, the following theorem is valid. 

Let 

l 
~ ~ ~i m 

R(z)=~=~ , ~ 0 ,  
~ 13~zJ j=o 
j=o 

(1.12) 

then 

C(l+1, m)#0, C(4m+l)#0, 
C(l ~- ~, m -~ ]) = 0 when ~, ] ----- i, 2 .... 

(1.13) 

Condition (1.13) is also sufficient for R(z) to be a rational function. We can conclude 
on the basis of this theorem that after calculating the finite number of quantities C(L, 
M), by means of (i.ii) we determine the denominator of the rational function R(z) precisely. 
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Thus we have found the poles z k of the function w(z) in region G and their multiple 
Pk- In order to find w(z) in G, i.e., completely to reconstruct the velocity field in the 
thickness of the fluid, it is sufficient to use the formula 

• 

w (z) = ( ~ -  "~ ( -  i) • 

k 

~ [(,o ~ - 2gs (~)) (~ + (s. (~ ) )~) ]"qI  (~ + ~s (~) - ,~1'~ e~ 

- ~  (:c + t s  (x) - zo)N (x + t s  (x) - z) 

(i.14) 

in the exact case and to utilize the formula 

w ( , . )  = 

k 

(i.i5) 

within the scope of the theory of small waves, where G + m z 0 is an arbitrary fixed point, 
N = P + i. These formulas are easily obtained by applying the Cauchy theorem to the ana- 
lytical function within the region 

w (.-) 1 I  (* - ~)P~ 
l ( z )  = k z ~ G 

( , -  ~o) ~ 

with consideration of (1.5) and (1.6), respectively. 

Let us take note of the fact that in the general case the integrals from (1.9) are taken 
numerically, for example, provided that S(x) has been specified experimentally. We will 
illustrate the proposed approach through the simple example in which the solution is achieved 
in explicit form. 

2. Example. The profile of the free surface induced by a point vortex moving at a 
velocity v 0 at depth h has been found in [i]: 

t cos~( t - -x ) - -hs inv( t - -x )  dt (2.1) S (x) = ~ ? + h~ 
X 

(v = g/v02; F is the intensity of the vortex). Since this profile has been found within 
the scope of linear wave theory, it is natural to reconstruct w(z) in this same approxima- 
tion, i.e., to use formula (1.6). It is possible in this case to bring all of these calcu- 
lations to a conclusion and to find the explicit form of w(z). For R(E), in the place of 
(1.7) it is convenient to make use of the following modified formula: 

- -  vo ~ 1 - -  , S  (~) - -  iS '  (x) dx 
_rt~ ()9 = ~ (~ - ~)  ( ~ -  x) -. 

- - o o  

(G + 3 ~ is a fixed point). With such RD(X) the zero multiples of its denominator are reduced 
by unity in comparison with (1.7) and coincide with the orders of the poles w(z). Formula 
(1.9) assumes the form 

-]-oo 

Vo f l - -  v S  (x) - -  iS '  (r 
cm 3 (x -- ~) (x- ~0) ~+1 - - o o  

dx. (2.2) 

Assuming that p = i, ~0 = i/2 and substituting (2.1) into (2.2), we find 
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F ' t  
Ck = 2~[(--i)k+i(h + t ) ( h +  1/2) ~+1" 

Having calculated the elements of the C table C(L, M), we obtain C(0, 
(h + 1/2)] ; 0, C(s m) = 0, s = i, 2 .... , m = 2, 3, .... from which, 
(1.12), we conclude that R(D) has the form of R(q) = a0/(80 + 8in), q = z + i/2. 
of the denominator in R(q) are found by means of (i.ii), where L = 0 and M = i: 

O[O~j (~:= !t = 0. 

Hence it follows that the single zero of the denominator in R(z) is found at the point z i 
-ih, i.e., it coincides with the position of the vortex. 
(1.15), we have the complex velocity of the flow 

1) = r / [ i 2 ~ ( h  + 1 ) .  
i n  a c c o r d a n c e  w i t h  

The z e r o s  

Substituting the value of z i into 

r ( 1 i ) r~ �9 f e - ~ t -  w(z) ~ ~ + ~  a ~ _ d t + v  o. 

This expression coincides with that derived in [I] through solution of the direct problem. 

3. Conclusions. The steady-state problem of the potential streamlining of submerged 
solids by the proposed method is solved exactly only when the streamlined bodies can be repre- 
sented by a finite system of point singularities. Let us note that the hypothesis regarding 
the finiteness of the number of singularities in the complex velocity is used extensively 
in problems related tothe streamlining of solids [1-4, 7]. When the velocity singularities 
do not reduce to a finite system of poles, we can speak only of an approximate solution. 
This case is sufficiently complex and goes beyond the scope of the present paper. Let us 
note that the example considered above is primarily illustrative in nature and of interest 
only from the standpoint that it allows us to clarify the essential nature of the proposed 
approach. 

4. Stability of the Method. If the profile of the free surface S(x) corresponds to 
a flow with a complex velocity w(z), the analytical region D = {z: Imz < S(x) + e, ~ > 0}, 
with the exception of a finite number of poles z i e G of total order P, then (i.ii) and (1.14) 
uniquely reproduce w(z) in G with respect to S(x). Under the initial condition of continuity 
for the second derivative of the function S(x) we can prove the continuity of the representa- 
tion S(x) § w(z) specified in (i.ii) and (1.14) in the vicinity of S~ in the following 
sense. For any p > 0, ~ > 0 we find 6 > 0 such that from 

sup {IS(x)--S~ tS'(x)--(S~ (4 1) 

i t  w i l l  f o l l o w  t h a t  Iw(z)  - w ~  < E f o r  a l l  z e K c F, where  K i s  compac t  and F = 
N 

G ~  UVi(p), G o , w ~ i s  t h e  r e g i o n  o c c u p i e d  by t h e  f l u i d ,  and t h e  complex  v e l o c i t y  o f  t h e  f l o w ,  
1 

c o r r e s p o n d i n g  t o  t h e  p r o f i l e  S ~  N r e p r e s e n t s  t h e  number  o f  p o l e s  w in  G, V i ( p )  = {z: 
Iz - zi~ < p} 

In order to prove this contention it is sufficient successively to estimate the quanti- 
ties ICn - Cnal, n = 0, 1 ..... 2N, using (1.9), as well as lw(z) - w~ on the set F with 
consideration of the fact that Izi - zi~ + 0 as 6 ~ 0. Within the scope of linear theory 
condition (4.1) can be replaced with the weaker 

(x 2 + ~ ) ~  , dx  < 5 < 

The proof is accomplished analogously. 

5. Prospects. As was noted in [8], the familiar inconsistency of the surface profiles, 
the latter obtained theoretically (in the solution of the direct problems) as well as experi- 
mentally, is associated with the inadequacy of the streamlining model contained in the theo- 
retical calculations. The proposed method makes it possible to enhance this interesting 
remark with practical results. Indeed, the problem of localizing the point poles of the 
velocity allows an exact solution. Consequently, on the basis of the experimentally derived 
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profiles of the free surface it is possible to ascertain the nature of streamlining for vari- 
ous bodies: under which conditions a given body allows representation by point poles, the 
determination of their orders and position, as well as under which conditions the "point" 
representation is violated. For example, we can study the case of the streamlining of a 
cylinder which is traditionally simulated by a point dipole. The streamlining potential 
for a solid is not an additive quantity [7], so that in the case in which the cylinder is 
in motion in the immediate vicinity of the free surface its influence is therefore signifi- 
cant, so that it s possible to assume that the potential of the dipole ceases satisfac- 
torily to describe the streamlining of the cylinder. In view of the stability of the pro- 
posed method the vanishingly small errors in the measurement of the input data (the surface 
profile) introduce vanishingly small errors into the solution, i.e., the substitution of 
similar problems in the context of the proposed approach is valid. 
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THE EVOLUTION OF WEAKLY LINEAR PERTURBATIONS 

IN A PLUG FORMED OF AN AIR-WATER MIXTURE 

S. I. Lezhnin, I. I. Mullyadzhanov, V. E. Nakoryakov, 
B. G. Pokusaev, and N. A. Pribaturin 

UDC 532.529 

Various flow regimes arise in the motion of gas and vapor mixtures combined with liquids 
(a bubble flow, a plug-type flow, a rodlike flow, etc.), and these various types of flows 
are distinguished on the basis of their hydrodynamic and gasdynamic characteristics. At 
the present time, the formation and propagation of pressure waves in a mixture of a liquid 
with gas bubbles have been studied rather thoroughly, both from the theoretical and experi- 
mental standpoints. As regards the plug-type regime of flow in a gas-liquid mixture, exis- 
ting information [1-4] is insufficient to comprehend the entire pattern involved in the pro- 
cess of wave formation. Initially, the model for the propagation of pressure waves was pro- 
posed independently in [3, 4], where it was assumed that the propagation of a wave in such 
a medium comes about as a result of inertialess compression and expansion of the gas plug 
and through the transfer of momentum to the liquid plug. It was demonstrated in [3, 5] that 
the mathematical description of the evolution of the waves is reduced, as in a bubble medium, 
to an equation of the Korteweg-de Vries type, and here we find also a hypothesis dealing 
with the possibility of forming pressure waves in such a medium, where the shape and quanti- 
tative relationships for the propagation of these waves are identical to those that prevail 
in a gas-liquid bubble mixture. 
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